All documents
This guide will walk you through fine-tuning a pre-trained BERT model on the GLUE MRPC task using a GPU-enabled Code Server container.
Create a container using Code Server template.
Access to container via HTTP endpoint, the Code Server container will ask for the password, please use the password generated in container details to connect.
sudo apt update && sudo apt install -y python3 python3-pip python3-venv git
Using virtual environment to install required python packages and run training code
python3 -m venv ~/venv
source ~/venv/bin/activate
pip install --upgrade pip
pip install scikit-learn scipy
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
pip install datasets evaluate accelerate
cd /workspace
git clone https://github.com/huggingface/transformers.git
pip install –e .
Your output will be stored at /tmp/bert-finetuned. In this step, you will fine-tune the pre-trained BERT model on the Microsoft Research Paraphrase Corpus (MRPC) task from the GLUE benchmark. This means the model will learn to classify whether two sentences are paraphrases (have the same meaning) or not.
cd /workspace/transformers/examples/pytorch/text-classification
python3 run_glue.py
--model_name_or_path bert-base-uncased
--task_name mrpc
--do_train
--do_eval
--per_device_train_batch_size 16
--learning_rate 2e-5
--num_train_epochs 3
--output_dir /tmp/bert-finetuned
--overwrite_output_dir
Create a file contains test script called test.py
from transformers import BertTokenizer, BertForSequenceClassification
import torch
# Load fine-tuned model and tokenizer
model_path = "/tmp/bert-finetuned"
model = BertForSequenceClassification.from_pretrained(model_path)
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# Move model to GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
# Prepare test sentence
sentence1 = "This is a great example!"
sentence2 = "This is a demo for code server GPU Container!"
inputs = tokenizer(sentence1, sentence2, return_tensors="pt").to(device)
# Run inference
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class = torch.argmax(logits, dim=1).item()
# Map class to label (MRPC uses 0/1)
label_map = {0: "not paraphrase", 1: "paraphrase"}
print(f"Sentence: {sentence1}")
print(f"Sentence: {sentence2}")
print(f"Predicted Class: {predicted_class} ({label_map[predicted_class]})")
Run file test.py to test the finetuned model
python3 test.py
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checbox-analytics | 11 months | |
cookielawinfo-checbox-functional | 11 months | |
cookielawinfo-checbox-others | 11 months | |
cookielawinfo-checkbox-necessary | 11 months | |
cookielawinfo-checkbox-performance | 11 months | |
viewed_cookie_policy | 11 months |